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Abstract

Macroscopic elastic moduli governing the incremental deformation of pressurized lungs are

calculated on the basis of a micromechanical study of an individual lung element (alveolus). The

spongy lung tissue (parenchyma) is presumed to be in an initial state of isotropic tension, and the

lung alveolus is idealized as a pin-jointed truss in the shape of a regular dodecahedron. The

analysis is based on a variational statement of non-linear structural mechanics, and the results show

how the moduli depend on the initial tension and the assumed constitutive behavior of the idealized

truss members

INTRODUCTION

The theory of lung elasticity has received much study during the last two decades, with

particular attention directed to the establishment of overall constitutive relations between stress and

strain in lung tissue. The most common approach (e.g. Lambert and Wilson, 1973; Frankus and

Lee, 1974; Fung et a., 1978; Vawter et al., 1979; Lanir, 1983; Stamenovic and Wilson, 1985) has

been to contemplate representative substructural lung elements, idealize their geometries, specify

their elastic properties (often via strain-energy functions), assume that local and overall strains are

identical, and, finally, get macroscopic constitutive relations by appropriate averages of the local
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stresses. The earlier work of Mead et al. (1970) and Wilson (1972) was more in line with the

complementary approach of loading representative elements with the macroscopic stress, and

computing their strains. In a recent paper, Kimmnel et al. (1986) returned to this viewpoint, and

studied the elastic behavior of pressurized lungs on the basis of a model in which a typical

inicrostructural element of spongy lung tissue (parenchyma) was idealized as a regular, pin-jointed,

dodecahedral space truss (Fig. la). An initial isotropic tension transmitted to the parenchyma by

the surrounding pressurized pleural membrane was simulated by radial forces at each joint that

produced identical tensile forces in the truss members. The model was then used in a calculation of

linear, isotropic relations between subsequent small increments of macroscopic stress and strain in

the parenchyma. The results showed the dependence of the elastic constants for incremental

deformation on the initial hydrostatic tension, and on the tensile constitutive behavior of the

idealized truss members. The elastic moduli found were in fairly good agreement with those

inferred from available experimental data, but the calculations produced some anomalous results

for small values of the stiffness of the element members.

In this paper the model of Kimnmel et al. is reformulated, and a rigorous analysis, based on

a general variational principle of non-linear structural mechanics, is executed.

MODEL FORMULATION

The midcroscopic air sacs (alveoli) of which the spongy lung parenchyma is composed are

roughly polyhedral in shape, and bounded by thin interfacial membranes. Besides alveoli, the

parenchyma is also pervaded by blood vessels, by bronchioles emanating from the main bronchial

tubes, by fibers surrounding openings in the alveolar walls, and by fibrous tissues extending from

the surrounding pleural membrane (Wilson and Bachofen, 1982). We will pretend that the elastic

effects of these extra constituents may be simulated simply by an appropriate thickness of the walls

of an alveolar conglomeration. Since each alveolar wall is shared by two alveoli, we will regard C

the parenchyma as an aggregate of individual hollow polyhedra, the faces of which have half the
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actual average effective wall thickness. Then, in accordance with standard ideas of composite-

material theory, we define the macroscopic strain produced by a prescribed macroscopic stress as

the average of the stains experienced by the individual polyhedra in a large piece of parenchyma

subjected to boundary tractions consistent with the given stress. When the lung is inflated, the

alveolar openings allow the pressures in the alveoli to equalize, so that there are no net pressures

across the individual alveolar walls, but a transpulmonary pressure P0 is applied to the inside

surface of the pleura. We will assume that, in turn, the pleural membrane transmits a hydrostatic 1
tension P < P0 to the parenchymna, that this initial hydrostatic stress produces a purely dilatational

strain, and that subsequent stress and strain increments are then connected by isotropic constitutive

relations.

In this paper, we will bypass the conceptual averaging process needed to determine the

macroscopic strain produced by a given stress, and calculate instead tl'e average strain experienced

by a single hollow element in the shape of a regular dodecahedron. In this analysis, each face of

the dodecahedron will be subjected to a traction consistent with the prescribed uniform stress but,

at the same time, the surface displacements will be constrained in a way that keeps each face necarly

flat. To be precise (see Fig. I b), it will be assumed that (i) the vector displacement at the center of

each pentagonal face is the mean of the displacements at its five comners; and that (ii) on each face

the displacement vanies linearly within each of the five constituent triangles that meet at the center.

Accordingly, the five comner displacements suffice to specify the displacement within each

pentagon. It is easily shown that for small displacements satisfying these kinematic assumptions

VtiA-14 Lbility Codes
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the average mean curvature of each face vanishes.* By virtue of its symmetry, the isolated

dodecahedron, when loaded and constrained in this way, is indeed an elastically isotropic

structure, properly reflecting the isotropy of the random aggregate it is meant to represent.

Following Kimmel et al., we make a further simplification, in which we concentrate all of

the in-plane load carrying capacity of the dodecahedral faces into elastic, pin-jointed rods along the

edges, and adopt for these members the constitutive relation

.,_ T=B (1) .-

TBL

Here T and L are current values of member force and length, dots represent time derivatives, and

B is a non-dimensional stiffness that may itself depend on L.

We will first consider a uniform hydrostatic tension P applied normally to the faces of the

dodecahedron, and calculate the incremental bulk modulus K defined by

K 13/(VN) (2)

where V is the enclosed volume. Then, with the hydrostatic tension kept constant and normal to

the deforming faces, we will apply surface traction rates corresponding to a uniaxial stress a (Fig.

2) and calculate the Young's modulus

E- =6/i (3)

where t is the average strain rate in the direction of a suffered by the dodecahedron. The

standard connections for isotropic bodies will then give Poisson's ratio v and the shear modulus

G.

* For small deflection w(x,y) normal to an initially flat surface of area A and boundary C, the local

mean curvature is

I fV2WdA= 1 f aw ds
2.A wdA C--

where aw/an is the normal derivative, and the line integral around the perimeter of the pentagon
vanishes when the conditions (i), (ii) are imposed on w.

," -
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BULK MODULUS

The calculation of K that follows is essentially the same as that of Kimmel et al. Suppose

that hydrostatic tension P produces identical forces T in the 30 members of the dodecahedron.

Then, by the principle of virtual work, P produces rates-of-change of volume and length that

satisfy

PV = 30TL (4)

Self-similar growth of the dodecahedron due to P implies that

V/=3A.L. (5)

so that
PV= 10TL (6)

and

P/P + V/V = r/I + LJL (7)

Eliminating L/L and T/T from (5), (7), and (1) gives

i/P =(B-

and so by the definition (2)
K/P = (B-2)/3 (8) .

YOUNG'S MODULUS

With the hydrostatic tension P maintained, we apply vertical tension o to the 12 planar

faces of the dodecahedron (Fig. 2 shows plan and elevation views of the loaded dodecahedron;

geometrical relations are listed in Appendix A). The nominal stress a is specified as a force per "5'..
'°

unit horizontal projection of original surface area, i.e. the area corresponding to the presence of P

alone.

While a is applied P is kept normal to the current surface orientations, and its 'I'.

magnitude in terms of force per unit current area is fixed. To begin the analysis of deformation 41

due to a , we assert the principle of virtual work
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30

Ti 8A i =PSV+ 8g (9)

where Ai represents the elongation of the ith member, Ti is the corresponding force, and n is

the potential o' the applied a loading. (The procedure that follows was guided by an earlier

development (Budiansky 1969) of equations for the nonlinear analysis of space trusses.) The

elongation Ai is defined as (Lj-L 0 ) , where Li is the current member length, and L0 is the

reference length corresponding to the initial state when only P is present. The virtual changes in

volume 8V and the virtual elongations SAi must be compatible with changes in joint

displacements at the corners of the dodecahedron and with the previously stated kinematic

assumptions concerning the displacements within the faces of the dodecahedron.

Since there are only three distinct member responses when a is applied, namely (see Fig.

2) those of (1) AB, (2) BC, and (3) CD, we can replace the internal-virtual-work sum in Eq.

(9) by
3

lox T i A ii-I ,

Also, just four displacement variables suffice to specify the deformation. These are (see Figs. 2,

3) the vertical displacements w1 , w2 in the direction of the unit vector k of the joints at A and C,

respectively; and the outward displacements v1 , v2  at B, C , in the horizontal direction

n B = nc, pointing away from the vertical central axis of the dodecahedron. The joint displacements

elsewhere follow by symmetry.

The T8A terms in (9) will be rewritten in terms of the Lagrangian strain defined by

S= - (L2 -L)/L ,

= A/Lo+ .2(A/[L) (10)

and the modified force variable Q defined as
Q, [Lo /(Lo + A)]IT a (Lo /U-T (1

It follows that

8= 8A/ L+ A8A/ = (L/V3)0A

* q

. . . ...-- **..
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and

T8A = LoQIj

so that the variational statement (9) may be transformed to

1OLO Qk8k = P8V+ 8n (12)

Note that since "i = I 0
2 , and t/T = Q/Q + LL, the constitutive relation (1) is equivalent to

= (B-1) (Lo/L) 2i (13)

The advantage of '1 over A is that it is quadratic instead of irrational in the displacements.

It is convenient to introduce nondimensional displacements yi (i = 1,2,3,4) defined by

[y' y 2 ,y 3 ,y4 ] = [Wl'Vlw 2 'v 2 ]/L 0  (14)

Then, for the three member types, the definition (10) leads to

Tlk= y (k 1,2,3) (15)

in terms of coefficients aki and bkij = bkji that are derived and listed in Appendix A. Here, and

hereafter, we use summation convention, summing from 1 to 4 over repeated subscripts.

The deformed volume V of the dodecahedron can be expressed as a function of the joint

displacements by (Appendix B)

V= V[I* ci Yi + I dij yi Yj + O(Y 3)]  (16)

Here V0 is the original pressurized volume, and dij = dji• Finally, in Appendix C the potential of

the applied tensile stresses is derived in the form

n = ;V0 y[fYi] (17)

Substituting Eqs. (15)-(17) into Eq. (12) and dividing by PV0 , puts the variational

statement of equilibrium into the form

(- -' f Qk (aki +  bkii j)8y i -[ci + dij Yj O(y 2)]8y, = (a /P) fi 8Yi (18)

Here we used Eq. (6) to replace PVc((10Lo) by To

_° %



For a -0, yi vanishes and Qk - o , so that (18) becomes

1J I aki -cj SYi = 0 (19)

Since (19) holds for arbitrary variations 8yi, we should have

iaki-ci = 0 (i = 1,2,3,4) (20)
k-I

and it can be verified that these four equations are indeed satisfied. This is consistent with the fact

that (19) simply asserts the principle of virtual work at the initial state, and our special assumptions

concerning the displacements ensures its validity.

Now we want to use (18) to get a variational statement governing the displacement rates

j . Differentiating (18) with respect to time (remembering that the 8yi's are variations that remain

arbitrary) gives
f\ 3

--0X [Qk (aki + bkij yj )+ Qkbkij yjj Syi
k 'I

- [d ij yj + O(yy) I y i = (&/P) fiby i  (21)

Now let a 0, so that yj -* 0, L - , and Qk T T; then

1 3 3
1 Qkaki+ I bkijyj-dijyj 8y = (a/P)fi8yi (22)
k-I k-l

Here, by Eq. (13),

(k =T (B-)11k  (23)

where, by differentiation of Eq. (15), and letting yj -+ 0,

lk = aki y i (24)

Hence (22) implies the four independent equations

[(B-1)qij + sij - dij ]>j = (a/P)fi (i 1,2,3,4) (25)

where
3

qij aki a kl (26)
- k-I

1'
4-.

?4
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and

= k, bkli (27)

are listed in Appendix B. The dotted quantities in Eqs. (25) now refer to the state at C = 0 , and

these four equations constitute a symmetric system of four simultaneous, linear equations for

5, (j = 1,2,3,4). The results will, of course, be proportional to b/P. Then, to define the average

strain rate i we write

= oVo  (28)

and by Eq. (17) this gives

fi Y i (29)

The final result for Young's modulus, given by Eq. (3), is

E/P = f/ (30)(fi Y i

Thus the solution of Eqs. (25) will provide E/P as a function of B . Then, with the use of Eq.

(8) for K/P, the standard relations

E= 3K(1-2v)= 2G(l+v) (31)

among Poisson's ratio v , shear modulus G , E , and K for isotropic materials may be used to

compute v and G/P.

RESULTS AND DISCUSSION

The results for E/P and G/P are plotted versus B in Fig. 4, and Poisson's ratio v is

shown in Fig. 5. It is shown in Appendix D that for B - cc, the limiting values become

E/P = 5(1+T'5)/4'

= 4.045 (32)
=f - 1.348

v = 1/2

* ). --- ~ - . ~ - ~ - ',."
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For B 2, K vanishes, and v - -1 , because isotropic expansion dominates the strain-

rate tensor induced by &;hence E/P - 9K - 3(B-2) for B -+ 2 . On the other hand, the shear

modulus does not vanish at B = 2, where G/P -1. 127. But for B < 2 , the structure is unstable,

and the values for G/P would not be observable.

The limiting results for B - oshown in (32) are somewhat higher than those of Kimmel

et al. (1986), who find E/P -+ 3.5 1. But for B less than -5, the results of Kimmel et al. deviate

very markedly from the present ones, showing anomalous increases in both E/P and G/P as B

decreases. This is probably due to the fact that the various engineering approximations made by

Kinmmel et al. do not cope adequately with a delicate balance of elastic responses as the instability

point at B = 2 is approached.

To corroborate the isotropy of our model, an independent computation of Poisson's ratio

was made by means of a direct calculation of the average strain-rate tensor in the dodecahedron

(Appendix E). An explicit formula (Eq. (E8)) derived for v in terms of the yj's was found to

provide numerical results in perfect agreement with those calculated from E/P and KIP on the basis

of the isotropy relations (3 1).

We also studied (Appendix F) the effect of imposing an additional constraint on the

displacements, keeping each face of the dodecahedron perfectly flat during the imposition of (T . It

turns out that for B --. othis additional constraint makes no change at all in the limiting results

(32). The reason for this is that inextensionality of the members enforces the planarity constraint

automatically! Furthermore, the imposition of planarity produced only a tiny increase -- less than

1/10% -- in E/P over the full range 2 < <oc and the results in Figs. 4, 5 were barely changed.
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Experiments on dog, pig, and horse lungs by Hajji et al. (1979), involving local external

indentation of the pleural membrane of an inflated lung, were used by the investigators to extract
;;

values of G/(1-v) for incremental straining. Based on the somewhat uncertain value of P/P0 = .7

(Stamenovic and Wilson, 1985, suggest P/PO - 3/4) the results are shown in Fig. 6, where the

experimental values of G/[P(1-v)] found are compared with the predictions of the present theory.

Theory and exp. - ent are generally consistent for the range B - 5-20, but it should be noted that

near the lower end of this range the theoretical values of v (Fig. 5) become quite low.

CONCLUDING REMARKS

An important feature of the present theoretical approach is that by focusing on incremental

stress-strain relations, the constitutive description of the lung substructure has conveniently been

thrown into the single elastic parameter B, which, to be sure, may itself depend on the stress level.

Not only is B supposed to represent the effective elasticity of a fairly complex structure, it can also

be presumed to incorporate the effects of surface tension in the alveolar walls. (That is to say, the

basic relation given by Eq. (1) can still be considered to apply, operationally, when surface tension

is present.)

The finite limits approached by G/P and E/P for B -- c, are clearly consequences of the fact

that the basic pin-jointed dodecahedron is a staticaly underdeterminate mechanism (rather than a

structure) in the absence of hydrostatic tension. By the same token, it is clear that the use of a

statically determinate (or indeterminate) truss model would have led to G/P, E/P - c, for B - ,.

Finally, we note that if, in contrast to the present approach, overall properties were calculated via

the imposition of a uniform local strain field, then B - cc would imply unbounded stiffness for all

models -- underdeterminate or not.

A..... . .. ,.....,..,. ., -. : . ., _ ., . . . .. . . . . ,-. .. , .. . . .. . . . . .. . . - ... . . - . . . .
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APPENDIX A

Lagrangian Strains

The geometrical parameters of the regular dodecahedron shown in Fig. 2 satisfy the relations

co = 54*

a = 72"

sin c = cos .9 = (1 +45)/4

4sin2co =1+ 2 sin co

h = p, = Lo (sec co)/2

12 = g + h = L tan co

r = L. tanco sin co

and the dihedral angle Q2 between normals to adjacent planes is

C1= arc tan 2

These relations are useful in the calculations of this Appendix, as well as in those that follow.

Consider a bar PQ having initial length bo , and let tpQ represent a unit vector pointing from

P to Q. Displacements Up, UQ at P and Q produce the deformed length LpQ satisfying

LQ= 1tL0t + U Q-- ph2  (Al)

The Lagrangian strain (Eq. (10)) is then given by

tpQ" (UQ-Up) I[UQ_-UpI 12
T1ipQ = + 2 A2

L + 2L0

We will now apply the generic relation (A2) to find the strains of members AB, BC, and

CD (Fig. 3). The pertinent joint displacements are

UA= w1 k+ v ln A

UB = w1 T  + v1 B
(A 3)

UC = w2 k + v2 n c

UD =-w 2 k+ v2 nD

Since

*~* % ~ % S .. * ~ * p % ~ ~ % ~ .. ... *...
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tA.k=O , tB.n =-tBm'n=CoS , 

we get
1 'hI'lAB= 2(v 1 /L0 )cos (o+ 2(V/L) 2cOs20) (A4) 

The unit vector in the direction of CB satisfies

tc • k = h/L 0 = (sec o)/2

tCB" ns t CB" n = -g/Lo = (csc 2o))/2

and so Eq. (A2) gives

(wl-w 2 )sec co (v2-vl)csc 20o) (w-W 2 )2 (v-V 2 )2 A5

'12 =1BC 2L °  
2Lo 2L 2  2L 2  (A5)

Finally,

tD• k = g/Lo= csc 20o

tDC. nic  tDC' niD= (p1/L)cos a = csc 20)

and with Inc-C-nDI 2 = 2(1-sin co), Eq. (A2) produces

-~(v2/L0 /Ls (A6isi113 - 1 CD= (w2 /Lo)csc 20o + 2(v2/Lo)cSc 2+ 2(w 2 /Lo) (1-sin )(v2/L) (A6)

Rewritten in terms of the yj's (Eq. (14)), Eqs. (A4)-(A6) provide the following results for

the coefficients aki in (15):

04cos a) 0 0
[a ki]  w -csc 2o - sec 0) csc 2(o (A7) S.

T 0 2 csc 20) csc 20)Lt
T7he coefficients blij vanish, except for

b122 = 4 cos ( (A8)

The matrix of coefficients b2ij is

.

.-

S'
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1 0 -1 0

lbi) 0 1 0 -1 W[b2 ij] = 1 1(A9)

-1 0 1 0

0 -1 0 1

Finally, the only b3ij that do not vanish are

b333 = 4(AIO)

b344 = 2(1-sin co)

The coefficients qCj and sij defined by Eqs. (26) and (27) are

1 - (csc co)/2 -1 (csc (o)/2

- (csc w)/2 3(csc 2co)/2 (csc a))/2 - (csc 2 c)/4
=j (sec 2cw (All)

-1 (csc co)/2 9 - 8 sin w (csc 4 co)/16

(csc co)/2 - (csc 2 c)/4 (csc4 (o)/16 (csc 2 co)/2

and

1 0 -1 0

0 4 - 2 sino 0 -1

[siJ] = (A 12)
-1 0 5 0

0 -1 0 3 - 2 sin (o

V.

% % % . ,S.
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APPENDIX B

Volume Change

Together with the assumptions made concerning the piecewise linear displacement patterns

within each face, the comer displacements w1 , v1I, w2, v2 (Fig. 3) determine the configuration of

the dodecahedron subjected to uniform tension. The deformed volume can be written as (Fig. Ib)

V = 2 VABKMH + 1O[VAx B + 2 VBxC + 2VcxD] (BI)

wherein each of the subscripted terms represents the volume of a pyramid with its apex at the

center of the dodecahedron, and the subscript denotes the base. The original area of the pentagon

ABFGH was

A (5/4) L2 tan co (32)

and the altitude of the corresponding pyramid was (Fig. 2)

r L tan (o sin o

Hence the deformed volume is

VABFGH = 5(Lo tan o sin co+ w,)(L 0 + 2v, cos (o)2 tan co/12 (B3)

To facilitate the calculation of the remaining terms in (B 1), we use the orthogonal unit vectors
pa.

(ij,k) shown in Fig. 2 to write the original position vectors of A, B, C, D, E and X as

A, B = [±i/2+ j(tan w)/2+k tan co sin o]L0 "

C, E =[:Ti sin w+j tan co sin co+ k (csc 2 ci)/4]L0

(B4)

D = [j tan (o-k (csc 2 w)/4]L 0

X = [2j+ k][tan w (I + sin co)]/5

The displacement vectors are
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WA,wB =i vI COs d)+jv sin co+ kw

WCWE =:riv 2 cos ao+jv2 sin (o+ kw2
4,

WD= jv 2 -kw 2  (B5)

Wx= [WA+ WB+WC+ WD+ WE]I5

= j[2v, sin cO+ v2 (1 + 2 sin w)1/5+ k [2w 1+w21/5 -.

a"

Then (
VABX = [A+WAI X [X+wx] •[B+wB/ 6  (B6)

'

and similarly for the remaining two pyramidal volumes in (B1). Carrying out the required

straightforward but tedious calculations leads to

V= Vo+ [w1 (3 + 8 sin o)/2 + 2v, (I + sin co) + w2 (-1 + 4 sin o)/2

+ V2 (1+6 sin co )]L tan co-

+ [v 2 (2+ sin co) + v (2 + 3 sin (o) + 2w1 v, (3 + 2 sin Co) -

+w v2(7 + 6 sin o) - 4w 2vI + 4v v2 sin .

+ W2 V2 (5 + 2 sin o)] [ 2Lr sin co]/3

+ [cubic terms]

where the original volume Vo is

Vo = 5L3 tan 2 c sin ( (B7)

The coefficients in the expansion in (16) for V/V 0 in terms of the nondimensional y's are then
'-oS

C= cot o (3 csc + 8)/10

c2 = 2 cot (o (csc+ 1)/5
(B8)

C3 = cot o(-csc + 4)/10

c4 = cot w (csc + 6)/5

'S
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and

0 6 + 4 sin co 0 7 + 6 sin o

6+ 4 sin ca 2(2 + sin ci) -4 4 sin co

[dij] = (2 cot 2 o/15) (B9)

0 -4 0 5 +2sin co

7+6sin co 4sinco 5+2sin co 2(2 + 3 sin co)

. *~K.-9.
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APPENDIX C

Stress Potential

If the applied a stresses in the k direction produce the surface displacements u, then the

potential of the stresses is

1t= [n •Okk.u]dS (C1)
S

where the integration is over the undeformed surface, and n is the unit normal to this surface. Our

kinematic assumptions imply that (Fig. lb) the face ABFGH remains plane, as does its counterpart

at the bottom of the dodecahedron. Hence the partial potential of the a-stresses applied to these

two faces is simply

[2aA 0w l ] (C2)

where A0 is the original area of the pentagon.

In face ABCDE (Fig. lb), the midpoint vector displacement wx is the mean of the fi e

comer displacements, the average over each triangle of the linearly varying displacements within

each triangle is the mean of its three comer displacements, and it follows that the average

displacement over the pentagon is also wx. Hence the potential of the a-stresses is just

(n • akk Wx)Ao (C3

But (Fig. 3)
wx  k= (2wl +w 2 )/5 (C4)

n . k = cos n = 1/45 (C5)

and the contribution (C3) is

aA cos Q (2wl+W 2 )/5 (C6)

Adding 10 such contributions to (C2) gives the total potential

7= 2oA 0 [(I + 2 cos Q)w,+ w 2 cos fl

= 2oA0 [(l + 2/',S)wl + w2 /N,51 (C7)

Hence, with the use of Eqs. (B2) and (B7) for A0 and V0, which give

' -

';;";,;:"""' " - "' • '""" " ' . . .-.- ;.-.. " ""i '""""" ""
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A 0 LoN 0 = (cot c csc )/4 (C8)

the coefficients fi in Eq. (17) become

f = (cot o)(csc co)(1 + 2/45)/2

f 2 = 0 (C9)

f3 = (cot o)(csc (o)/(2"45)

f4= 0

I'.

-I'

• .
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APPENDIX D

Inextensional Limit, B -

For B - *0, the members become inextensional, and therefore the strain rates given by

Eq.(24) must vanish:

ai i =0 (k =1,2,3) (D1)

It follows that for B - **,

i = Pic ()2)

where, in accordance with the aki matrix shown in (A7),
P3 = 5, 1 P2 = °  1 03:1 P4-2 (D3)

To evaluate the constant c, substitute (D2) into the variational statement (22) and choose

5y,= P. This gives

C[SJ - dij] P,3 = (6/P)fi Pi (134)

and then the limiting value of E/P, from Eq. (30), becomes
E/P = (sij - duj)P, 3J /(f k Pk)2 (D5)

Substitution of the values of s~. dW. and fk given in Eqs. (A12), (19), and (C9), respectively,

provides the result (after considerable reduction)

E/P = 5 sin (o

= 5(1 + "5)/4 (1)6)

and this was corroborated numerically via the solution of Eqs. (25) for very large B.

2A

, ", " .)" .=(m.;,,L- .m',r ' ,' ,-," .
-

,,-,. - ,- ,, -'. ,, • ), ,, = : € ' , ," .__. " - • • * , " - " •
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APPENDIX E

Average Strain Rates

The average strain-rate tensor C in a body V0 that suffers velocities u on its boundary S is

f { (6in + nu )dS} /(2V0 ) (El)

S

where n is the unit normal to S. If we let E = k.e-k denote the strain rate in the k direction, (E l)

gives

f (k • 6 )(n • k )dS}No (E2)

S

which, by (C1), is the same as */(Voo) = fi)ji Hence, direct averaging to calculate E/P gives the

same result as that found from the use of the energy definition (28) for L. However, an

independent calculation of Poisson's ratio can be based on the direct calculation of the mean

transverse strain rate

T(i-E. + j .E.j)/2 (E3)

Since n • i = 0 on ABCDE (see Fig. 2)

iT = 10 (n .j)(t .j)dS /(2V 0 ) (E4)

ABCDE

But

n •j = sin 0 = 2',5 (E5)

and

f (U j)dS (Wxj)Ao
ABCDE

= [2,' sin co + '2 ( + sin o)]A 0 /5 (E6)

where (B5) has been used for wx. Hence (E4) gives

i= 2[2)'2 sin (io+ ,4(1 + 2 sin Co)][AoLo]/(V ,#5)

=[2(1 + 45) + y4 (3 + 45)] [cot co csc O]/(4V5) (E7}
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Since ET=-Vt -Vf1S' we find, with Eq. (C8) for f1 ,

v Y21 + 5)+ ,(3 5)(E8)

2. 

.j( 
)+
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APPENDIX F

Planarity Constraint

An edge view of the pentagon ABCDE (Fig. 3) is shown in Fig. 7. For the comers of the

displaced pentagon A'B'CIDE to remain co-planar, we must have
h +w -w 2  g + 2w 2

h/2 + (v2 -v 1 )sin co g/2+v 2 (I -sin o)

In terms of the non-dimensional displacements yi, this reduces to the condition

F = giYi+  h (F2

where

g = (sec co)/2 ]
g2 = tan co-

g3 = - (sec o)/2 - 2 tan co

94 = - (sec (o)/2

hl4 = h 4 1 = - 1 + 2 sin co ]
h 23 = h 32 = 2(1 + 2 sin wo) (P4

h34 = h 4 3 = (1 + 6 sin co)

and all other h,, s vanish.

To impose the constraint (F2), we introduce the scalar Lagrangian multiplier ., and add

A.5F E X(gi + hij yj )5y, (5

to the left side of the variational statement (18). It follows from this modified variational equatioil

that if .- X0 for T-4 0 , then

aki -ci+x0gi }5y=0 (16)

and therefore (Eq. (20)) X0 = 0. If we now reproduce the stej that originally led to Eq. (25), the

corresponding equations for the constrained problem become
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[(B-l)q j+ sij-dij])j + X gi = (&/P)fi (i = 1,2,3,4) (F7)

where X refers to the state at a = 0. These four equations, together with the differentiated

constraint relation

gi Yi = 0 (F8)

that holds for yi = 0, constitute a symmetric system of five linear equations for , 1, '2' y, 4 and

X, and their numerical solution provided the results discussed in the text. The equations of

inextensionality (DlI) and the planarity condition (F8) are equivalent to the homogeneous relations

0 0 01

2 sino -1 -2 sin (o 1 Y2

-0 (F9)
0 0 2 13

2 sin co -1 -4 sin o -1 l4

Remarkably, the matrix of coefficients is singular, so that the limiting solution (D2), (D3)

for , in the limit B-- - remains valid, as do the limiting results for the moduli. Thus, planaritN, at

least for small displacements, is a consequence of inextensionality.
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Fig. 7 Comner displacements constrained by planariry condition.
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